Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38629250

RESUMO

Systemic antifungal therapy is critical for reducing the mortality from many invasive and chronic fungal infections. Triazole antifungals are the most frequently prescribed antifungals but require attention to dosing and drug interactions. Nearly 600 severe drug-drug interactions and over 1100 moderate interactions requiring dose modifications are described or anticipated with systemic antifungal agents (see https://www.aspergillus.org.uk/antifungal-drug-interactions/). In this article, we address the common and less common, but serious, drug interactions observed in clinical practice with triazole antifungals, including a group of drugs that cannot be prescribed with all or most triazole antifungals (ivabradine, ranolazine, eplerenone, fentanyl, apomorphine, quetiapine, bedaquiline, rifampicin, rifabutin, sirolimus, phenytoin and carbamazepine). We highlight interactions with drugs used in children and new agents introduced for the treatment of haematological malignancies or graft versus host disease (midostaurin, ibrutinib, ruxolitinib and venetoclax). We also summarize the multiple interactions between oral and inhaled corticosteroids and triazole antifungals, and the strategies needed to optimize the therapeutic benefits of triazole antifungal therapy while minimizing potential harm to patients.

2.
Plants (Basel) ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611508

RESUMO

Halophytes adapt to salinity using different biochemical response mechanisms. Temporal measurements of biochemical parameters over a period of exposure to salinity may clarify the patterns and kinetics of stress responses in halophytes. This study aimed to evaluate short-term temporal changes in shoot biomass and several biochemical variables, including the contents of photosynthetic pigments, ions (Na+, K+, Ca2+, and Mg2+), osmolytes (proline and glycine betaine), oxidative stress markers (H2O2 and malondialdehyde), and antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) activities of three halophytic Salicornia species (S. persica, S. europaea, and S. bigelovii) in response to non-saline, moderate (300 mM NaCl), and high (500 mM NaCl) salinity treatments at three sampling times. Salicornia plants showed maximum shoot biomass under moderate salinity conditions. The results indicated that high Na+ accumulation in the shoots, coupled with the relative retention of K+ and Ca2+ under salt stress conditions, contributed significantly to ionic and osmotic balance and salinity tolerance in the tested Salicornia species. Glycine betaine accumulation, both constitutive and salt-induced, also seems to play a crucial role in osmotic adjustment in Salicornia plants subjected to salinity treatments. Salicornia species possess an efficient antioxidant enzyme system that largely relies on the ascorbate peroxidase and peroxidase activities to partly counteract salt-induced oxidative stress. The results also revealed that S. persica exhibited higher salinity tolerance than S. europaea and S. bigelovii, as shown by better plant growth under moderate and high salinity. This higher tolerance was associated with higher peroxidase activities and increased glycine betaine and proline accumulation in S. persica. Taking all the data together, this study allowed the identification of the biochemical mechanisms contributing significantly to salinity tolerance of Salicornia through the maintenance of ion and osmotic homeostasis and protection against oxidative stress.

3.
Heliyon ; 10(5): e27132, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449649

RESUMO

In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.

4.
PLoS One ; 19(2): e0289561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324544

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) has a five-year survival rate of less than 5%. Absence of symptoms at primary tumor stages, as well as high aggressiveness of the tumor can lead to high mortality in cancer patients. Most patients are recognized at the advanced or metastatic stage without surgical symptom, because of the lack of reliable early diagnostic biomarkers. The objective of this work was to identify potential cancer biomarkers by integrating transcriptome data. METHODS: Several transcriptomic datasets comprising of 11 microarrays were retrieved from the GEO database. After pre-processing, a meta-analysis was applied to identify differentially expressed genes (DEGs) between tumor and nontumor samples for datasets. Next, co-expression analysis, functional enrichment and survival analyses were used to determine the functional properties of DEGs and identify potential prognostic biomarkers. In addition, some regulatory factors involved in PDAC including transcription factors (TFs), protein kinases (PKs), and miRNAs were identified. RESULTS: After applying meta-analysis, 1074 DEGs including 539 down- and 535 up-regulated genes were identified. Pathway enrichment analyzes using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that DEGs were significantly enriched in the HIF-1 signaling pathway and focal adhesion. The results also showed that some of the DEGs were assigned to TFs that belonged to 23 conserved families. Sixty-four PKs were identified among the DEGs that showed the CAMK family was the most abundant group. Moreover, investigation of corresponding upstream regions of DEGs identified 11 conserved sequence motifs. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 8 modules, more of them were significantly enriched in Ras signaling, p53 signaling, MAPK signaling pathways. In addition, several hubs in modules were identified, including EMP1, EVL, ELP5, DEF8, MTERF4, GLUP1, CAPN1, IGF1R, HSD17B14, TOM1L2 and RAB11FIP3. According to survival analysis, it was identified that the expression levels of two genes, EMP1 and RAB11FIP3 are related to prognosis. CONCLUSION: We identified several genes critical for PDAC based on meta-analysis and system biology approach. These genes may serve as potential targets for the treatment and prognosis of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Redes Reguladoras de Genes , Carcinoma Ductal Pancreático/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , 17-Hidroxiesteroide Desidrogenases/genética
5.
Sci Rep ; 14(1): 4671, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409285

RESUMO

Plant sterols are used as a supplement or an additive to reduce LDL cholesterol. The poor dispersibility and instability of phytosterols are the main limitations of their application. So, we tried to overcome these problems through nanoencapsulation of them with colloidal natural RSs (SLNs) using an effective approach to achieve higher efficiency and less intrinsic coagulation. Phytosterols extracted from flax seeds oil with caffeine by a new method were encapsulated with a stable colloid of sheep fat and ostrich oil (1:2), soy lecithin, and glucose through co-sonicated coacervation. Characterization of the obtained SLNs was conducted using FTIR, UV-Vis, SEM, DLS, and GC analysis. The three-factor three-level Behnken design (BBD) was used to prioritize the factors affecting the coacervation process to optimize particle size and loading capacity of SLNs. Operational conditions were examined, revealing that the size of SLNs was below 100 nm, with a phytosterols content (EE %) of 85.46% with high positive zeta potential. The nanocapsules' anti-microbial activity and drug-release behavior were then evaluated using the CFU count method and Beer-Lambert's law, respectively. The controlled release of nanocapsules (below 20%) at ambient temperature has been tested. The stability of nano-encapsulated phytosterols was investigated for six months. All results show that this green optimal coacervation is a better way than conventional methods to produce stable SLNs for the nanoencapsulation of phytosterols.


Assuntos
Lipossomos , Nanocápsulas , Nanopartículas , Fitosteróis , Animais , Ovinos , Portadores de Fármacos , Lipídeos , Tamanho da Partícula
6.
Vaccine X ; 16: 100440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283623

RESUMO

The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.

7.
Protein J ; 43(1): 24-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017315

RESUMO

Angiotensin-converting enzyme 2 (ACE2) has a specific interaction with the coronavirus spike protein, enabling its entry into human cells. This membrane enzyme converts angiotensin II into angiotensin 1-7, which has an essential role in protecting the heart and improving lung function. Many therapeutic properties have been attributed to the human recombinant ACE2 (hrACE2), especially in combating complications related to diabetes mellitus and hypertension, as well as, preventing the coronavirus from entering the target tissues. In the current study, we designed an appropriate gene construct for the hybrid protein containing the ACE2 catalytic subunit and the B subunit of cholera toxin (CTB-ACE2). This structural feature will probably help the recombinant hybrid protein enter the mucosal tissues, including the lung tissue. Optimization of this hybrid protein expression was investigated in BL21 bacterial host cells. Also, the hybrid protein was identified with an appropriate antibody using the ELISA method. A large amount of the hybrid protein (molecular weight of ~ 100 kDa) was expressed as the inclusion body when the induction was performed in the presence of 0.25 mM IPTG and 1% sucrose for 10 h. Finally, the protein structural features were assessed using several biophysical methods. The fluorescence emission intensity and oligomeric size distribution of the CTB-ACE2 suggested a temperature-dependent alteration. The ß-sheet and α-helix were also dominant in the hybrid protein structure, and this protein also displays acceptable chemical stability. In overall, according to our results, the efficient expression and successful purification of the CTB-ACE2 protein may pave the path for its therapeutic applications against diseases such as covid-19, diabetes mellitus and hypertension.


Assuntos
Diabetes Mellitus , Hipertensão , Humanos , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Domínio Catalítico
8.
J Mol Evol ; 91(4): 424-440, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191719

RESUMO

HUA ENHANCER 1 (HEN1) is a pivotal mediator in protecting sRNAs from 3'-end uridylation and 3' to 5' exonuclease-mediated degradation in plants. Here, we investigated the pattern of the HEN1 protein family evolutionary history and possible relationships in the plant lineages using protein sequence analyses and conserved motifs composition, functional domain identification, architecture, and phylogenetic tree reconstruction and evolutionary history inference. According to our results, HEN1 protein sequences bear several highly conserved motifs in plant species retained during the evolution from their ancestor. However, several motifs are present only in Gymnosperms and Angiosperms. A similar trend showed for their domain architecture. At the same time, phylogenetic analysis revealed the grouping of the HEN1 proteins in the three main super clads. In addition, the Neighbor-net network analysis result provides some nodes have multiple parents indicating a few conflicting signals in the data, which is not the consequence of sampling error, the effect of the selected model, or the estimation method. By reconciling the protein and species tree, we considered the gene duplications in several given species and found 170 duplication events in the evolution of HEN1 in the plant lineages. According to our analysis, the main HEN1 superclass mostly showed orthologous sequences that illustrate the vertically transmitting of HEN1 to the main lines. However, in both orthologous and paralogs, we predicted insignificant structural deviations. Our analysis implies that small local structural changes that occur continuously during the folds can moderate the changes created in the sequence. According to our results, we proposed a hypothetical model and evolutionary trajectory for the HEN1 protein family in the plant kingdom.


Assuntos
Metiltransferases , Plantas , Filogenia , Metiltransferases/genética , Metilação , Plantas/genética , Proteínas de Plantas/genética , Evolução Molecular
9.
NPJ Sci Food ; 7(1): 22, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231034

RESUMO

Protein hydrolysis is a process used in the food industry to generate bioactive peptides of low molecular weight and with additional health benefits, such as antihypertensive, antidiabetic, and antioxidant properties that are often associated with their content on hydrophobic amino acids. This results in an increased bitterness of the products, making them less desirable for their use in food formulations. This review summarizes the main dietary sources of bitter bioactive peptides, including methods to determine their bitterness, such as the Q-values and electronic tongue; and the main factors and mechanisms underlying the bitterness of these compounds. The main strategies currently used to improve the taste and oral delivery of bioactive peptides are also discussed together with the main advantages and drawbacks of each technique. Debittering and masking techniques are reported in detail, including active carbon treatments, alcohol extraction, isoelectric precipitation, chromatographic methods, and additional hydrolytic processes. Other masking or blocking techniques, including the use of inhibitors, such as modified starch, taurine, glycine, and polyphosphates, as well as chemical modifications, such as amination, deamination, acetylation, or cross-linking were also discussed. The findings of this work highlight encapsulation as a highly effective method for masking the bitter taste and promoting the bioactivity of peptides compared to other traditional debittering and masking processes. In conclusion, the article suggests that advanced encapsulation technologies can serve as an effective means to mitigate the bitterness associated with bioactive peptides, while simultaneously preserving their biological activity, increasing their viability in the development of functional foods and pharmaceuticals.

10.
Sci Rep ; 13(1): 5845, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037897

RESUMO

The detrimental effects of sand storms on agriculture, human health, transportation network, and infrastructures pose serious threats in many countries worldwide. Hence, wind erosion is considered a global challenge. An environmental-friendly method to suppress wind erosion is to employ microbially induced carbonate precipitation (MICP). However, the by-products of ureolysis-based MICP, such as ammonia, are not favorable when produced in large volumes. This study introduces two calcium formate-bacteria compositions for non-ureolytic MICP and comprehensively compares their performance with two calcium acetate-bacteria compositions, all of which do not produce ammonia. The considered bacteria are Bacillus subtilis and Bacillus amyloliquefaciens. First, the optimized values of factors controlling CaCO3 production were determined. Then, wind tunnel tests were performed on sand dune samples treated with the optimized compositions, where wind erosion resistance, threshold detachment velocity, and sand bombardment resistance were measured. An optical microscope, scanning electron microscope (SEM), and X-ray diffraction analysis were employed to evaluate the CaCO3 polymorph. Calcium formate-based compositions performed much better than the acetate-based compositions in producing CaCO3. Moreover, B. subtilis produced more CaCO3 than B. amyloliquefaciens. SEM micrographs clearly illustrated precipitation-induced active and inactive bounds and imprints of bacteria on CaCO3. All compositions considerably reduced wind erosion.


Assuntos
Carbonato de Cálcio , Areia , Humanos , Carbonato de Cálcio/química , Amônia , Carbonatos , Bacillus subtilis/metabolismo , Precipitação Química
11.
PLoS One ; 18(4): e0281470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37104505

RESUMO

Biotic stresses are pests and pathogens that cause a variety of crop diseases and damages. In response to these agents, crops trigger specific defense signal transduction pathways in which hormones play a central role. To recognize hormonal signaling, we integrated barley transcriptome datasets related to hormonal treatments and biotic stresses. In the meta-analysis of each dataset, 308 hormonal and 1232 biotic DEGs were identified respectively. According to the results, 24 biotic TFs belonging to 15 conserved families and 6 hormonal TFs belonging to 6 conserved families were identified, with the NF-YC, GNAT, and WHIRLY families being the most prevalent. Additionally, gene enrichment and pathway analyses revealed that over-represented cis-acting elements were recognized in response to pathogens and hormones. Based on the co-expression analysis, 6 biotic and 7 hormonal modules were uncovered. Finally, the hub genes of PKT3, PR1, SSI2, LOX2, OPR3, and AOS were candidates for further study in JA- or SA-mediated plant defense. The qPCR confirmed that the expression of these genes was induced from 3 to 6 h following exposure to 100 µM MeJA, with peak expression occurring between 12 h and 24 h and decreasing after 48 h. Overexpression of PR1 was one of the first steps toward SAR. As well as regulating SAR, NPR1 has also been shown to be involved in the activation of ISR by the SSI2. LOX2 catalyzes the first step of JA biosynthesis, PKT3 plays an important role in wound-activated responses, and OPR3 and AOS are involved in JA biosynthesis. In addition, many unknown genes were introduced that can be used by crop biotechnologists to accelerate barley genetic engineering.


Assuntos
Hordeum , Transcriptoma , Humanos , Hordeum/genética , Hordeum/metabolismo , Biologia de Sistemas , Transdução de Sinais , Produtos Agrícolas/genética , Hormônios , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Food Chem ; 421: 136195, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119689

RESUMO

An ultrasensitive electrochemical aptasensor based on a glassy carbon electrode, modified by carbon nanofibers and carboxylated multi-walled carbon nanotubes was fabricated to detect tetracycline in food samples. The affinity of antibiotics, including kanamycin, tetracycline, ampicillin, and sulfadimethoxine toward desired sequences of aptamers and the stability of antibiotic-aptamer complexes were studied using molecular docking and molecular dynamic simulations. Moreover, the highest affinity and most stable complex were observed for tetracycline in complex with kanamycin-specific aptamer (KAP). Finally, KAP was used to develop an aptasensor. The central composite design (CCD) was used to optimize effective parameters. The biosensor achieved a wide dynamic linear range (1.0 × 10-17-1.0 × 10-5 M) and a low limit of detection (2.28 × 10-18 M) under optimized conditions using differential pulse voltammetry. Using the developed aptasensor, tetracycline residues in milk samples were determined.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanotubos de Carbono , Nanotubos de Carbono/química , Simulação de Acoplamento Molecular , Técnicas Eletroquímicas , Limite de Detecção , Antibacterianos , Tetraciclina , Canamicina , Eletrodos , Aptâmeros de Nucleotídeos/química , Ouro/química
13.
Environ Sci Pollut Res Int ; 30(17): 48911-48927, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36920616

RESUMO

Malachite green (MG), an antibiotic with antifungal activity, is illegally used in aquaculture. Given that this chemical is teratogenic and mutagenic, abstinence from intake seems to be a need for public safety. The goal of this systematic review and meta-analysis was to determine the global contamination of fishes by MG and its reduced metabolite, leucomalachite green (LMG), in a number of marine and farmed fish species. For literature published prior to January 2022, several databases (Web of Science, PubMed, and Scopus) were investigated. In total, 20 publications (10 countries, 724 samples) achieved the criteria for inclusion. The overall average MG and LMG concentrations were 0.48 (95% CI: 0.47, 0.49 µg kg-1) and 0.59 (95% CI: 0.39, 0.79 µg/kg-1), respectively. Eel (M. albus) 15.50 (95% CI: (14.39, 45.39 µg kg-1) and eel (A. anguilla) 4.46 (95% CI: 1.23, 7.69 µg kg-1) had the greatest contamination of MG and LMG, according to the effect size, respectively. Warm-water fish had a concentration of 2.591 (95% CI: 2.25, 2.93 µg kg-1) while cold-water fish had a concentration of 1.55 (95% CI: 0.25, 2.84 µg kg-1). Fish containing medium-fat level of 1.86 (95% CI: 1.27, 2.44 µg kg-1) and high-fat content of 1.10 (95% CI: 0.93, 1.26 µg kg-1) had accumulate MG and LMG in their tissues, respectively. As a result, total MG observed in countries including China, Iran, and the Netherlands was higher than authorized (2 µg kg-1). The toxicity of MG and LMG demands more monitoring, especially in countries where these chemicals' residues are significant.


Assuntos
Peixes , Corantes de Rosanilina , Animais , Corantes de Rosanilina/química , Peixes/metabolismo , Água/metabolismo
14.
Comput Biol Med ; 157: 106529, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921457

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most death-dealing tumors, with a tremendously poor prognosis. Here, we, through interrogation of mRNA and protein data combined with a system biology approach, identified several key genes, functional processes, and pathways that can have critical roles in PDAC. We detected an interesting module related to the clinical traits that enriched in the ribosome, hematopoietic cell lineage, and cell adhesion molecules-related pathways. We also identified several hub genes in important modules that are associated with immune system processes. The results also indicated some lncRNAs, such as FAM30A, and MIR223HG with essential functions that are involved in PDAC. Additionally, five genes, including CD53, ITGAL, WDFY4, TLX1, and LMAN1L were screened by survival analysis and can be considered as candidate biomarkers or therapeutic targets. According to our strategy, the findings of this study may provide a better understanding of the molecular mechanisms and suggest potential prognostic and therapeutic targets for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , RNA Mensageiro/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
16.
PLoS One ; 18(3): e0277293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893121

RESUMO

The medicinal plant Digitalis purpurea produces cardiac glycosides that are useful in the pharmaceutical industry. These bioactive compounds are in high demand due to ethnobotany's application to therapeutic procedures. Recent studies have investigated the role of integrative analysis of multi-omics data in understanding cellular metabolic status through systems metabolic engineering approach, as well as its application to genetically engineering metabolic pathways. In spite of numerous omics experiments, most molecular mechanisms involved in metabolic pathways biosynthesis in D. purpurea remain unclear. Using R Package Weighted Gene Co-expression Network Analysis, co-expression analysis was performed on the transcriptome and metabolome data. As a result of our study, we identified transcription factors, transcriptional regulators, protein kinases, transporters, non-coding RNAs, and hub genes that are involved in the production of secondary metabolites. Since jasmonates are involved in the biosynthesis of cardiac glycosides, the candidate genes for Scarecrow-Like Protein 14 (SCL14), Delta24-sterol reductase (DWF1), HYDRA1 (HYD1), and Jasmonate-ZIM domain3 (JAZ3) were validated under methyl jasmonate treatment (MeJA, 100 µM). Despite early induction of JAZ3, which affected downstream genes, it was dramatically suppressed after 48 hours. SCL14, which targets DWF1, and HYD1, which induces cholesterol and cardiac glycoside biosynthesis, were both promoted. The correlation between key genes and main metabolites and validation of expression patterns provide a unique insight into the biosynthesis mechanisms of cardiac glycosides in D. purpurea.


Assuntos
Glicosídeos Cardíacos , Digitalis , Digitalis/genética , Transcriptoma , Fatores de Transcrição/genética , Metaboloma , Regulação da Expressão Gênica de Plantas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
18.
Sci Rep ; 13(1): 2091, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747030

RESUMO

The ribosome inactivating proteins (RIPs) efficiently decrease the microbial infections in plants. Momordica charantia MAP30 is a type I RIP that has not been investigated against plant viruses or bacteriophages. To evaluate of these activities, the recombinant MAP30 (rMAP30) was produced in the hairy roots of Nicotiana tabacum. Inoculation of 3 µg of transgenic total protein or 0.6 µg of rMAP30 against 0.1 µg of TMV reduced the leaf necrotic spots to 78.23% and 82.72%, respectively. The treatment of 0.1 µg of CMV with rMAP30 (0.6 µg) showed the reduction in the leaf necrotic spots to 85.8%. While the infection was increased after rMAP30 dilution. In the time interval assays, the leaves were first inoculated with 1 µg of rMAP30 or 0.1 µg of purified TMV or CMV agent for 6 h, then virus or protein was applied in order. This led the spot reduction to 35.22% and 67% for TMV, and 38.61% and 55.31% for CMV, respectively. In both the pre- and co-treatments of 1:10 or 1:20 diluted bacteriophage with 15 µg of transgenic total protein, the number and diameter of the plaques were reduced. The results showed that the highest inhibitory effect was observed in the pre-treatment assay of bacteriophage with transgenic total protein for 24 h. The decrease in the growth of bacteriophage caused more growth pattern of Escherichia coli. The results confirm that rMAP30 shows antibacterial activity against Streptococcus aureus and E. coli, antifungal activity against Candida albicans, and antiviral activity against CMV and TMV. Moreover, rMAP30 exhibits anti-phage activity for the first time. According to our findings, rMAP30 might be a valuable preservative agent in foods and beverages in the food industry as well as an antiviral and antimicrobial mixture in agriculture.


Assuntos
Bacteriófagos , Infecções por Citomegalovirus , Vírus de Plantas , Humanos , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Saporinas/metabolismo , Escherichia coli/metabolismo , Proteínas Inativadoras de Ribossomos/farmacologia , Antivirais/farmacologia , Proteínas de Plantas/metabolismo
19.
Microb Cell Fact ; 22(1): 39, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841778

RESUMO

BACKGROUND: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS: Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS: The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.


Assuntos
COVID-19 , Hepatite B , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Epitopos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/metabolismo , Imunidade Humoral , Escherichia coli/genética , SARS-CoV-2 , Adjuvantes Imunológicos/metabolismo , Camundongos Endogâmicos BALB C
20.
Sci Rep ; 13(1): 847, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646724

RESUMO

In Populus, drought is a major problem affecting plant growth and development which can be closely reflected by corresponding transcriptomic changes. Nevertheless, how these changes in Populus are not fully understood. Here, we first used meta-analysis and machine learning methods to identify water stress-responsive genes and then performed a systematic approach to discover important gene networks. Our analysis revealed that large transcriptional variations occur during drought stress. These changes were more associated with the response to stress, cellular catabolic process, metabolic pathways, and hormone-related genes. The differential gene coexpression analysis highlighted two acetyltransferase NATA1-like and putative cytochrome P450 genes that have a special contribution in response to drought stress. In particular, the findings showed that MYBs and MAPKs have a prominent role in the drought stress response that could be considered to improve the drought tolerance of Populus. We also suggest ARF2-like and PYL4-like genes as potential markers for use in breeding programs. This study provides a better understanding of how Populus responses to drought that could be useful for improving tolerance to stress in Populus.


Assuntos
Populus , Transcriptoma , Populus/metabolismo , Secas , Biologia de Sistemas , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...